Exponent rules

0/1
Intros
Lessons
  1. Powers VS. Exponents
0/12
Examples
Lessons
  1. Write each expression as a single power. Then, calculate.
    1. 43  ×  44{4^3}\; \times \;{4^4}
    2. 32  ×  35{3^2}\; \times \;{3^5}
    3. (7)3  ×  (7)3{\left( { - 7} \right)^3}\; \times \;{\left( { - 7} \right)^3}
  2. Simplify each expression into a single power. Then, calculate.
    1. (3)6÷(3)5{\left( { - 3} \right)^6} \div {\left( { - 3} \right)^5}
    2. 64÷61{6^4} \div {6^1}
    3. (5)6÷(5)4{\left( { - 5} \right)^6} \div {\left( { - 5} \right)^4}
  3. Rewrite each expression and then calculate.
    1. Rewrite [2  ×(7)]3{\left[ {2\; \times \left( { - 7} \right)} \right]^3} as the product of two powers. Then, calculate.
    2. Rewrite (83)6{\left( {{8^3}} \right)^6} as a single power. Then, calculate.
    3. Rewrite (78)6{\left( {\frac{7}{8}} \right)^6} as the quotient of two powers. Then, calculate.
  4. Solve the following:
    1. Calculate(50)  ×  (50)  ×  (50)\left( { - {5^0}} \right)\; \times \;\left( { - {5^0}} \right)\; \times \;\left( { - {5^0}} \right).
  5. Simplify each expression into a single power.
    1. (22)6  ×  23{\left( {{2^2}} \right)^6}\; \times \;{2^3}
    2. (6)4(6)2(6)3\frac{{{{\left( { - 6} \right)}^4}{{\left( { - 6} \right)}^2}}}{{{{\left( { - 6} \right)}^3}}}