Parallel and perpendicular lines in linear functions

0/1
Intros
Lessons
    • Definition of Parallel and Perpendicular Lines
    • How does that relate to slope?
0/7
Examples
Lessons
  1. Determine whether the three points A (-2,-1), B(0,4) & C(2,9) all lie on the same line.
  2. Determine the following slopes are parallel, perpendicular, or neither.
    i) m1=25,m2=25 m_1 = {2 \over 5}, m_2= {2 \over 5}

    ii) m1=15,m2=51m_1 = {1 \over5} , m_2 = - {5 \over 1}

    iii) m1=47,m2=1221m_1 = {4 \over 7}, m_2 = {12 \over 21}

    iv) m1=m_1 = undefined, m2=0 m_2 = 0

    v) m1=mn1;m2=m1bm_1 =mn^{-1}; m_2 =-m^{-1}b
  3. Given the points of two lines, determine when the lines are parallel, perpendicular or neither.
    1. Line 1: (3,2) & (1,4); Line 2: (-1,-2) & (-3,-4)
    2. Line 1: (5,6) & (7,8); Line 2: (-5,-6) & (-7,-8)
    3. Line 1: (0,4) & (-1,2); Line 2: (-3,5) & (1,7)
  4. Show that the points A(-3,0), B(1,2) and C(3,-2) are the vertices of a right triangle.
  5. Show that the points A(-1,-1), B(3,0), C(2,4) and D(-2,3) are the vertices of a square.