Simplifying complex fractions

0/3
Intros
Lessons
  1. Type 1: single  fractionsingle  fraction\frac{single\;fraction}{single\;fraction}
  2. Type 2: multiple  fractionmultiple  fraction\frac{multiple\;fraction}{multiple\;fraction}
  3. Type 2 Special Case: Fractions Involving Negative Exponents
0/3
Examples
Lessons
  1. Type 1: single  fractionsingle  fraction\frac{single\;fraction}{single\;fraction}
    simplify:
    i) 2389\frac{\frac{2}{3}}{\frac{8}{9}}
    ii) 12x5y33x22xy7y2\frac{\frac{12x^5y^3}{3x^2}}{\frac{2xy^7}{y^2}}
    iii) 5x105x2x\frac{\frac{5x-10}{5}}{\frac{x-2}{x}}
  2. Type 2: multiple  fractionmultiple  fraction\frac{multiple\;fraction}{multiple\;fraction}
    simplify:
    i) x2y31yy2x31x\frac{\frac{x^2}{y^3}-\frac{1}{y}}{\frac{y^2}{x^3}-\frac{1}{x}}
    ii) 14z+4z21z22z3\frac{1-\frac{4}{z}+\frac{4}{z^2}}{\frac{1}{z^2}-\frac{2}{z^3}}
  3. Fractions Involving Negative Exponents
    Simplify:
    i) x13x23x19x2\frac{x^{-1}-3x^{-2}}{3x^{-1}-9x^{-2}}
    ii) (x2y2)1(x^{-2}-y^{-2})^{-1}