Factorising trinomials

0/1
Intros
Lessons
  1. Use "cross-multiply, then check" method to factor a trinomial
0/23
Examples
Lessons
  1. Factor:
    1. b2b20{b^2} - b - 20
    2. x210x+16{x^2} - 10x + 16
    3. 2x314x2+24x2{x^3} - 14{x^2} + 24x
    4. 14+5yy214 + 5y - {y^2}
  2. Factor:
    1. 2x2+25x+122{x^2} + 25x + 12
    2. 5x2+8x+35{x^2} + 8x + 3
    3. 8x2+10x38{x^2} + 10x - 3
    4. 6m213m86{m^2} - 13m - 8
    5. 18x29x+118{x^2} - 9x + 1
    6. 63+20z3z263 + 20z - 3{z^2}
    7. 8x2+8x68{x^2} + 8x - 6
  3. Factor:
    1. 8x2+xy9y28{x^2} + xy - 9{y^2}
    2. 6x2+17xy3y26{x^2} + 17xy - 3{y^2}
    3. 14x24xy+16y2\frac{1}{4}{x^2} - 4xy + 16{y^2}
  4. Factor:
    1. 8x2y2xy98{x^2}{y^2} - xy - 9
    2. 25sin2x35sinx+1225{\sin ^2}x - 35\sin x + 12
    3. 12cos2x20cosx+312{\cos ^2}x - 20\cos x + 3
    4. 6(x+5)2+17(x+5)36{\left( {x + 5} \right)^2} + 17\left( {x + 5} \right) - 3
    5. 15(x3)211(x3)1415{\left( {x - 3} \right)^2} - 11\left( {x - 3} \right) - 14
  5. Factor:
    1. x617x3+30{x^6} - 17{x^3} + 30
    2. a42a263{a^4} - 2{a^2} - 63
    3. 15x416x21515{x^4} - 16{x^2} - 15
    4. 8x414x2+38{x^4} - 14{x^2} + 3