Reflexión respecto al eje X:y=f(x)X: y = -f(x)

  1. Introducción0/1 watched
  1. 0/1
Now Playing:Es reflection across the x axis– Example 0
Introducción
0/1 watched
  1. Estudiando reflexiones verticales
    1. Dibuja la gráfica de las siguientes funciones en el mismo plano cartesiano:
      y=(x4)3y=(x -4)^{3} \quad vs y=(x4)3 \quad -y = (x - 4)^{3} \quad


    2. Si comparamos con la gráfica de y=(x4)3\, y = (x - 4)^{3}:
      • La gráfica de y=(x4)3\, y=(x - 4)^{3} es una reflexión con respecto al __________________.
Transformaciones de funciones: Traslaciones horizontales
Jump to:Notes
Notes

Tal y como funcionan las reflexiones respecto al eje YY, se pueden hacer reflexiones respecto al eje XX. Una reflexión de una función con respecto a un eje consiste en seleccionar un eje del plano cartesiano como referencia y después dibujar todos los puntos de esa función a exactamente la misma distancia del eje pero del lado contrario de éste.
El resultado de una reflexión es una gráfica simétrica donde el eje de simetría es aquel sobre el cual se hizo la reflexión.

En esta sección aprenderemos cómo hacer una reflexión con respecto al eje XX, es decir, una reflexión vertical.