Teorema fundamental del cálculo

Now Playing:Es fundamental theorem of calculus partii – Example 0a
Intros
  1. Si ff es continua en el intervalo [a,b]\left[ {a,b} \right], entonces:
    ddxaxf(t)dt=f(x)\frac{d}{{dx}}\int_a^x f\left( t \right)dt = f\left( x \right)
Examples
  1. Teorema fundamental del cálculo (parte 1)
    Evalúa:
    1. ddx1000x5+8t  dt\frac{d}{{dx}}\int_{1000}^x \sqrt {5 + 8t\;} dt

    2. ddx10x6sin2(5t3t+8)e4tdt\frac{d}{{dx}}\int_{ - 10}^{{x^6}} \frac{{{{\sin }^2}\left( {5{t^3} - t + 8} \right)}}{{{e^{4t}}}}dt