Power rule

Get the most by viewing this topic in your current grade. Pick your course now.

Now Playing:Power rule – Example 1a
Examples
  1. power rule: ddx(xn)=n  xn1\frac{{d}}{{{d}x}}\left( {{x^n}} \right) = n\;{x^{n - 1}}
    1.   ddx(x5){\;}\frac{{d}}{{{d}x}}\left( {{x^5}} \right)

    2.   ddx(x){\;}\frac{{d}}{{{d}x}}\left( x \right)

    3.   ddx(3){\;}\frac{{d}}{{{d}x}}\left( 3 \right)

Definition of derivative
Jump to:Notes
Notes
When using the Definition of Derivative, finding the derivative of a long polynomial function with large exponents, or powers, can be very demanding. To avoid this, we introduce you one of the most powerful differentiation tools that simplifies this entire differentiation process – the Power Rule. In this section, we will see how the Power Rule allows us to easily derive the slope of a polynomial function at any given point.
POWER RULE: ddx(xn)=n  xn1\frac{{d}}{{{d}x}}\left( {{x^n}} \right) = n\;{x^{n - 1}} , where nn is any real number